5.2 – Properties of Exponents and Power Functions

Daily Objectives:

- 1. Introduce algebraic proof
- 2. Review the properties of exponents
- 3. Introduce the parent power function and distinguish it from the exponential function
- 4. Find solutions to power equations using properties of exponents
- 5. Introduce rational exponents as a means of solving equations

Investigation: Properties of Exponents

Part 1: Write each product in expanded form, and then rewrite in exponential form.

a.
$$2^3 \cdot 2^4$$
(2. 2.2) (2. 2.2.2)

b.
$$x^2 \cdot x^5$$
 $x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x$

Product Property of Exponents: $a^m \cdot a^n = \underline{a^{m+n}}$

Part 2: Write the numerator and denominator of each quotient in expanded form. Reduce by eliminating common factors. Then rewrite the factors that remain in exponential form.

a.
$$\frac{4^5}{4^2} = \frac{4 \cdot 4 \cdot 4 \cdot 4 \cdot 4}{4 \cdot 4} = 4^3$$

b.
$$\frac{x^8}{x^6} = \frac{\cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x}}{\cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x}} = \cancel{x}$$

Quotient Property of Exponents: $\frac{a^m}{a^n} = \underline{a^m}$

Part 3: Write each quotient in expanded form, reduce and rewrite in exponential form:

a.
$$\frac{2^2}{2^3} = \frac{1}{2 \cdot k \cdot 2} = \frac{1}{2} = 2$$

b.
$$\frac{x^3}{x^6} = \frac{\cancel{x} \cdot \cancel{x} \cdot \cancel{x}}{\cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x}} = \frac{\cancel{x}}{\cancel{x}} = \cancel{x}^{-3}$$

Rewrite each quotient using the property from Part 2.

Definition of Negative Exponents:
$$\frac{1}{a^n} = \underline{\qquad}$$

Step 4: Write the following expressions in expanded form. Then rewrite in exponential form:

a.
$$(3^2)^4$$
 $(3.3)(3.3)(3.3)(3.3)$

Power to a Power: Property:
$$(a^n)^m = \underline{a}^{mn}$$

Part 5: Write the following expressions in expanded form. Then rewrite in exponential form:

a.
$$(3x)^4$$
 $3x \cdot 3x \cdot 3x \cdot 3x \cdot 3x$
 $3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot x \cdot x \cdot x$

b.
$$\left(\frac{x}{y}\right)^2$$
 $\frac{x}{y} \cdot \frac{x}{y} = \frac{x^2}{y^2}$

Power of a Product Property:
$$(ab)^m = a^m b^m$$

Power of a Quotient Property:
$$\left(\frac{a}{b}\right)^n = \underbrace{\frac{a^n}{b^n}}_{b^n}$$

Step 6: (1) Write each quotient in expanded form. Then simplify. (2) Use the quotient property to rewrite each quotient in exponential form.

a.
$$\frac{4^3}{4^3}$$
 $\frac{4^3}{4^3}$ $\frac{4^3}{4^3}$ $\frac{4^3}{4^3}$ $\frac{4^3}{4^3}$ $\frac{4^3}{4^3}$ $\frac{4^3}{4^3}$

a.
$$\frac{4^3}{4^3}$$
 $\frac{4^3}{4^3}$ $\frac{4^3}{4^3}$ $\frac{4^3}{4^3}$ b. $\frac{x^5}{x^5} = \frac{x \cdot x \cdot x \cdot x}{x \cdot x \cdot x \cdot x} = 1$

Zero Exponents:
$$a^0 =$$

Extension of Product of a Quotient Property:
$$\left(\frac{a}{b}\right)^n = \left(\frac{b}{a}\right)^n$$

Power Property of Equality: If a = b, then $a^n = b^n$

Common Base Property of Equality: If $a^n = a^m$, and $a \ne 1$, then n = m

Example 1: Simplify the following expressions by using the properties of exponents.

a.
$$m^4 \cdot m^{10}$$

b.
$$x^{-3} \cdot x^{5}$$

c.
$$x^{-8}$$

d.
$$\frac{x^9}{x^7}$$
 χ^2

e.
$$(2a^4)^2$$

f.
$$\left(\frac{x^4y^2}{xy^7}\right)$$

$$xy = x$$

$$g. \left(\frac{y^3}{z^2}\right)^5$$

$$\frac{y^{-15}}{z^{-10}} = \frac{z^{10}}{y^{15}}$$

h.
$$\left(\frac{15a^0bc^{13}}{3b^4c^2}\right)^{-2}$$

$$\frac{3^{2}b^{6}}{15^{2}c^{22}}$$

$$\frac{9b^{6}}{225c^{22}}$$

Exponential Function

The general form of an exponential function is

$$y = ab^x$$

where a and b are constants and b > 0.

Power Function

The general form of a power function is

$$y = ax^n$$

where a and n are constants.

What is the difference between an exponential function and a power function?

In an exponential function, the variable is the x-value. In a power function the variable is the base of the power.

Example 2: Solve for positive values of x:

a.
$$x^4 = 3000$$

X 27.4008

c.
$$x^2 + 12 = 48$$

b.
$$6x^{2.5} = 90$$

$$\chi^{2.5} = 15$$
 $\chi^{2.5} = 15$

X=2.95418

d.
$$2x^3 + 10x^3 = 972$$

$$\frac{12 \times 3 = 972}{12}$$

Formative Assessment

a.
$$x^6 = 4,826,809$$

$$X = 13$$

b.
$$5x^5 = 1,215$$

$$X = 3$$

c.
$$7x^2 + 22 = 1394$$

$$7x^2 = 1372$$